

Scintillation-based background rejection methods

Anyssa Navrer-Agasson

DUNE Low Energy Physics Working Group - August 11, 2021

Solar neutrinos in DUNE

Solar neutrinos DUNE potential

DUNE could deliver world-leading results in solar neutrinos:

- Precision measurement of the ⁸B flux
- First observation of the hep flux
- Neutrino-mixing parameters measurements

Solar neutrinos

Previous study

- Dan Pershey studied charge signal from solar neutrinos and background sources
- Identified ⁴⁰Ar(α,γ) reactions from ²²²Rn decays as a concerning background
 - ► 222Rn uniformly distributed in the LAr
 - α from Rn decay chain absorbed by ⁴⁰Ar with subsequent γ emission (rare, but too frequent to be negligible)
 - **E**γ ~ 15 MeV

Assume 10 mBq/kg of ²²²Rn (see <u>Juergen's talk</u>)

Idea: use scintillation light to reduce ²²²Rn backgrounds

Solar neutrinos

MANCHESTER 1824 The University of Manchester

Our study

- Improve solar neutrino signal selection with scintillation-based methods
 - Make use of Pulse Shape Discrimination (widely used in dark matter LAr experiments)
 - Rely on non-uniform distribution of ions from ²²²Rn decays in the TPC
 - No charge information

Detector and simulation

Detector and simulation

Event rate in DUNE

Initial fluxes from E.Vitagliano, I.Tamborra, G. Raffelt

Event rates are computed using SNOwGLoBES (see <u>website</u>)

Detector and simulation Geometry

- Simulate events in one section of module, between anode and cathode
- Study impact of Xe doping
- Add TPB coated foils at the cathode plane to enhance light collection

Detector and simulation Semi-analytic scintillation model

- Geometric prediction of number of incident photons and direct propagation time
- Parametrised corrections accounting for effects of Rayleigh scattering, absorption and reflections

Standard fast optical simulation in DUNE-SP, SBND

(see arXiv:2010.00324 for further details)

Ion migration model

Ion migration model Context

- Some dual phase TPC experiments observed an accumulation of ²²²Rn and daughters events near the cathode
 - Due to some radon daughters being produced as positive ions
- Can provide a way to discriminate against background if we are able tag events near the cathode
- Need to know the fraction of alpha decays happening at the cathode

Observation by WArP

Ion migration model Method

- Simulate the decay position of the different elements of the chain
 - The two key parameters are the ionisation fraction and drift velocity
- ²²²Rn distributed uniformly along x-position with no drift
- 214Po drift neglected due to its short half-life
- Extract the x distribution of alpha decays

Ion migration model

Decay positions

Isotope	Drift velocity [cm/s]	Ion fraction
Po218	0.43	0.37
Pb214	0.4	0.37
Bi214	0.4	0.56

Distance to the cathode	Fraction of alpha decays [%]
< 30cm	34.72
< 20cm	32.5
< 10cm	30.31

Distribution used as input to simulate ${}^{40}\text{Ar}(\alpha,\gamma)$ decay positions

For more details on this study, see *full collaboration meeting talk*

Pulse shape discrimination

Pulse shape discrimination

Principle

PSD parameter f_{prompt}: fraction of light seen in a certain time window

	Singlet	Triplet
Time constant	$\sim 7 \text{ ns}$	$\sim 1.6 \ \mu s$
Population ratio for Electron ionizing	33%	67%
Population ratio for Nucleus ionizing	75%	25%

Pulse shape discrimination Adding reflective foils

Foils foils improve separation as a large fraction of the ${}^{40}\text{Ar}(\alpha,\gamma)$ events happen near the cathode

Not enough photons collected for efficient PSD without boost from foils

Pulse shape discrimination

MANCHESTER 1824 The University of Manchester

F_{prompt} cut performance

Efficiency and purity

ROC curve

Pulse shape discrimination

The University of Manchester

Selected events

Before f_{prompt} cut

After fprompt cut

Pulse shape discrimination Adding xenon

- Doping with Xe changes scintillation timings and effectively removes the scintillation slow component
 - f_{prompt} cut impossible
- Need to find alternative rejection method.

• Accumulation of 40 Ar(α,γ) events near the cathode can be used to explore other discriminating observables.

The University of Manchester

Exploring other methods

Other methods

Ratio of visible to VUV light

- Have some photon detectors not coated with wavelength shifter.
 - → Sensitive only to visible light reflected off of foils
- Coated detectors could be sensitive to both depending on coating
- Events close to CPA will have a higher fraction of visible light detected

The University of Manchester

Other methods

Light "spreading"

MANCHESTER

The University of Manchester

- Divide the optical detectors into small groups or "regions"
- Record the number of "regions" needed to detect 80% of the total light from an event
- Events close to the CPAs will have a more spread out light pattern
- Can vary number of channels per region to optimise results

Summary and next steps

- DUNE has great potential for solar neutrinos studies
- ²²²Rn induced background can be challenging, but scintillation light is a promising way to mitigate it
- Many ideas to be explored:
 - Non-PSD rejection methods to account for Xe doping
 - Combined cuts
 - Tune selection for hep flux
 - Add vertical drift configuration

The University of Manchester

Thank you!

Questions?